Search results

1 – 2 of 2
Article
Publication date: 20 April 2015

Mário Rui Tiago Arruda and Dragos Ionut Moldovan

– The purpose of this paper is to report the implementation of an alternative time integration procedure for the dynamic non-linear analysis of structures.

Abstract

Purpose

The purpose of this paper is to report the implementation of an alternative time integration procedure for the dynamic non-linear analysis of structures.

Design/methodology/approach

The time integration algorithm discussed in this work corresponds to a spectral decomposition technique implemented in the time domain. As in the case of the modal decomposition in space, the numerical efficiency of the resulting integration scheme depends on the possibility of uncoupling the equations of motion. This is achieved by solving an eigenvalue problem in the time domain that only depends on the approximation basis being implemented. Complete sets of orthogonal Legendre polynomials are used to define the time approximation basis required by the model.

Findings

A classical example with known analytical solution is presented to validate the model, in linear and non-linear analysis. The efficiency of the numerical technique is assessed. Comparisons are made with the classical Newmark method applied to the solution of both linear and non-linear dynamics. The mixed time integration technique presents some interesting features making very attractive its application to the analysis of non-linear dynamic systems. It corresponds in essence to a modal decomposition technique implemented in the time domain. As in the case of the modal decomposition in space, the numerical efficiency of the resulting integration scheme depends on the possibility of uncoupling the equations of motion.

Originality/value

One of the main advantages of this technique is the possibility of considering relatively large time step increments which enhances the computational efficiency of the numerical procedure. Due to its characteristics, this method is well suited to parallel processing, one of the features that have to be conveniently explored in the near future.

Details

Engineering Computations, vol. 32 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 8 August 2016

Miguel Abambres and Mário Rui Arruda

Since the use of advanced finite element analysis (FEA) in the design of steel structures has been increasing its popularity in order to avoid unsafe or highly conservative…

Abstract

Purpose

Since the use of advanced finite element analysis (FEA) in the design of steel structures has been increasing its popularity in order to avoid unsafe or highly conservative designs, a solid know-how in computer-aided design (CAD) and engineering (CAE) codes is necessary. Therefore the purpose of this paper is to provide an extensive review of useful guidelines concerning modelling, simulation and result validation for the accurate performance of those analyses.

Design/methodology/approach

Such guidelines are obtained from international steel design codes like Eurocode 3 and DNV, publications from experienced CAE engineers and renowned FE software companies like Ansys and Altair. Topics like mesh independence, the effect of the load sequence on the load bearing capacity and steel fracture criteria are underlined.

Findings

Since the use of advanced FEA in the design of steel structures is becoming more and more traditional due to the increase of its competitiveness when compared to the use of (very) conservative design rules, a solid know-how in CAD and CAE codes is necessary.

Practical implications

This work will be quite useful for structural steel stress engineers, contributing for a safer use of FEA in research and design.

Originality/value

This work will be quite useful for structural steel stress engineers, contributing for a safer use of FEA in research and design.

Details

International Journal of Structural Integrity, vol. 7 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 2 of 2